Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Altruistic Punishment and Human Cooperation: A Darwinian Perspective

Moritz Hetzer and Prof. Didier Sornette Chair of Entrepreneurial Risks ETH Zurich

2009//9/22

Motivation

Questions we want to answer:

- Why do people altruistically punish defectors?
- What is the role of fairness perception and otherregarding preferences in this context?
- How does punishment affect the emergence and maintenance of cooperation?
- Why do we cooperate?

Motivation: The evolution of norms/genes

NAMES OF A DESCRIPTION OF A DESCRIPTIONO

 We want to understand the roots of individual & collective behavior from an evolutionary point of

Motivation: The evolution of norms

- Experiments identify behavioral patterns
- Economic theories describe these patterns

NUMBER OF STREET

Motivation - existing approaches

- Evolutionary theories
 - Kin selection
 - Direct / indirect / social reciprocity
 - gene-culture coevolution
- Analytic models
 - Mutual two-player interactions
 - Focus on equilibrium solutions
 - Detached from reality
 - Evolutionary game theory
 - better: Iterative Game Theory

NA NA RANA

culture/genes culture/genes

culture/genes culture/genes

culture/genes

e₁

Motivation - existing approaches

- Economic theories
 - Descriptive
 - Snapshot of current norms
 - Do not cover evolutionary dynamics
- Computer simulations
 - Sequential games
 - Lattice structure
 - Discrete decisions
 - Detached from reality
 - Focus on equilibrium solutions

$$U_{i}(x) = x_{i} - \alpha_{i} \max \left\{ x_{j} - x_{i}, 0 \right\} - \beta_{i} \max \left\{ x_{i} - x_{j}, 0 \right\}, \quad i \neq j.$$

$$value$$

$$\overset{\text{value}}{\overset{value}}{\overset{value}}{\overset{value}}}}}}}$$

-210

Ω

Motivation - Our approach

 We want to answer the questions by closely integrating experimental economics with agent-based modeling.

No RELEASED

Empirical foundation

 We use data from Fehr's & Gächter's public goods game experiments (2000/2002) ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Other-Regarding preferences and altruistic punishment: A Darwinian Perspective

- 1. Each subjects decides to contribute to the group project.
- 2. The group project pool is compounded by a factor of 1.6
- 3. The project return is equally redistributed to all group members.
- 4. Each subject gets the opportunity to punish other group members at own costs, i.e. punishment is costly to both the punisher and the punished individual.

Model Design:

- Properties of agent i :
 - Level of cooperation $m_i(t)$

NAMES OF A DESCRIPTION OF A DESCRIPTIONO

- Propensity to punish $k_i(t)$
- Wealth/Fitness $W_i(t)$

Model Design – one simulation period:

 cooperate: Each agent contributes m_i to the group project
 Dunichment of other group

UN REAL PROPERTY OF

punish: Punishment of other group members

Model Design – empirical punishment:

Model Design – one simulation period:

- cooperate: Each agent contributes m_i to the group project
- punish: Punishment of other group members according to:

$$p_{i \to j} = \begin{cases} k_i \cdot (m_i - m_j), \text{ if } m_i > m_j \\ 0, \text{ else} \end{cases}$$

UN REAL PROPERTY OF

Model Design – one simulation period:

 cooperate: Each agent contributes m_i to the group project

No REPORTED

- punish: Punishment of other group members
- **consume:** Consume avg. group welfare gained in period t-1

Model Design – P/L, wealth and consumption:

Profit & Loss:

• Wealth:

$$W_{i}(t+1) = W_{i}(t) + s_{i}(t) - c(t)$$

Consumption:

consumption

No 18 1 1 2 19 1 191

$$c(t) = \overline{W}(t-1) - \overline{W}(t-2)$$

Model Design – one simulation period:

• adapt: Change cooperation level m_i and the propensity to punish k_i

UN REAL PROPERTY AND

Model Design – Adaptation of m_i :

Agents adapt their level of cooperation m_i if: profit/loss < consumption</p>

with:
$$m_i(t+1) = m_i(t) + \mathcal{E}$$

Model Design – Adaptation of k_i :

- (A) Selfish agents: Adapt their behavior if: profit/loss is less than her consumption.
- (B) Inequality avers agents: Adapt their behavior if: profit/loss < average group profit/loss (*downside*) or profit/loss > average group profit/loss (*upside*).

NAMES OF STREET

• (C) Inequity averse agents: Adapt their behavior if:

contribution > group average contribution **and** profit/loss < group's average profit/loss (**downside**) or contribution < group average contribution **and** profit/loss > group's average profit/loss (**upside**).

Model Design – Adaptation of k_i :

 (D) Disadvantageous inequality avers agents: Adapt their behavior if: profit/loss < average group profit/loss (*downside*)

No Rolling and

 (E) Disadvantageous inequity averse agents: Adapt their behavior if: contribution > group average contribution and profit/loss < group's average profit/loss (*downside*)

Model Design – one simulation period:

NAMES OF A DESCRIPTION OF A DESCRIPTIONO

- selection: If the wealth of an agent drops below 0 the agent dies.
- cross-over: Dead agents are replaced with new ones. The level of cooperation m_i and propensity to punish k_i are initialized by the avg. values of the surviving population.

Model Design – Simulation:

- We run this model for 1 million simulation periods over 800 system realizations with
 - m(0)_i
 k(0)_i
 w(0)_i

and obtained a distribution for k_i which we compare with the empirical distribution obtained from experimental data.

Disadvantageous inequity aversion fits best!

Moritz Hetzer – DMTEC – Entrepreneurial Risks – mhetzer@ethz.ch

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Altruistic Punishment and the Emergence of cooperation: A Darwinian Perspective

2009//9/22

The effect of punishment on cooperation

 (Altruistic) punishment is often used to explain the emergence of cooperation in social dilemmas.

No of Balancia

Moritz Hetzer – DMTEC – Entrepreneurial Risks – mhetzer@ethz.ch

Evidence for short term persistence in period-by-period decision process:

 Subjects seem to follow a trend in their updates of the individual contributions.

No Rolland

 If profit/loss in period (t) is larger than in period (t-1)

$$m_i(t+1) = 2 \cdot m_i(t) - m(t-1)$$

 Previous results are ROBUST to this addition

The effect of punishment on cooperation

The effect of punishment on cooperation

The effect of deterrence

NAMES OF STREET

Altruistic punishment and cooperation

NA STREET, STATES

- Is altruistic punishment sufficient to sustain cooperative behavior ...
- Is altruistic punishment sufficient to promote individuals (strangers)?
 - Partners: group composition stays constant
 - **Strangers:** group composition changes

First-order dynamics among strangers

ADDER THE REAL PROPERTY OF

Moritz Hetzer – DMTEC – Entrepreneurial Risks – mhetzer@ethz.ch

First-order dynamics among partners

NAMES OF STREET, STREE

Feedback by punishment + group migration promotes cooperative behavior

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusion

2009//9/22

Conclusion

- The evolution of altruistic punishment can be explained by disadvantageous inequity aversion
- Punishment can promote cooperation among social-related individuals (partners)
- Punishment acts as a coordination mechanism among unrelated individuals (strangers)
- To promote cooperation among unrelated individuals, additional mechanisms are required (heterogeneity).

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Outlook: Behavioral Mechanism Design and Social Engineering

Outlook: Behavioral Mechanism Design

- Mechanism design and contract theory base on the homo economicus assumption.
- They aim at controlling a social system by means of monetary incentive schemes / selfishness assumptions.

Outlook: Social capital

- Mechanism design/contract theory should also consider
 - ... the impact and the dynamics of social norms
 - ... reciprocal effects
 - ... altruistic behavior
 - ... fairness perception, and many more...

The value of "social capital" is underrated!

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thanks for your attention!

Questions, comments and criticism are very welcome!

Conclusion

- The evolution of altruistic punishment can be explained by disadvantageous inequity aversion
- Punishment can promote cooperation among social-related individuals (partners)
- Punishment acts as a coordination mechanism among unrelated individuals (strangers)
- To promote cooperation among unrelated individuals, additional mechanisms are required (heterogeneity).