The variable shape of flocks of birds

Charlotte K. Hemelrijk & Hanno Hildenbrandt Behavioural Ecology and Self-organisation Centre for Ecological and Evolutionary Studies University of Groningen The Netherlands

Starlings

• Starling display above the roost in Utrecht: shape is highly variable (Brodie 1976, Carere et al 2009)

Variable flock shape

Starlings above roost

Dunlins travelling

in all contexts: 'telepathy' (Selous, 1930)

Fish Schools

- Usually oblong (Pitcher 1976; Bumann et al 1997)
- But not if
 - -School is very large (Gerlotto & Paramo 2003)
 - -Attacked by a predator

Hypothesis

More local differences in behaviour \rightarrow Shape is more variable

Hard to study empirically → We study it in a model

Model of self-organisation

Simple rules of the individual \rightarrow Complex behaviour at a group level

This talk:

model of flocks resembling real birds
theory of shape of schools of fish

School shape:

Oblong

Adaptive?

• Lower detectability, because predators attack at front (Bumann, Krause, Rubenstein1997)

How organised ?

• Cognition or self-organisation?

(Kunz & Hemelrijk, 2003; 2005; Hemelrijk & Hildenbrandt 2008)

Theory about oblong shape

(Kunz & Hemelrijk 2003, Artificial Life; Hemelrijk & Kunz 2004, Behavioural Ecology; Hemelrijk & Hildenbrandt, 2008, Ethology; Hemelrijk et al 2010, Ethology)

Computer Models are based on Attraction Alignment Avoidance

$$\mathbf{F}_{\mathbf{Social}_{i}} = \mathbf{f}_{att_{i}} + \mathbf{f}_{ali_{i}} + \mathbf{f}_{avo_{i}}$$

Oblong shape by self-organisation

Oblong Shape

(Kunz & Hemelrijk 2003; Hemelrijk & Kunz 2004; Hemelrijk & Hildenbrandt, 2008)

Two and three dimensional models, several group sizes, group compositions, two cruise speeds as a side - effect

Collision Avoidance → usually Slow Down & Move Inwards → Lengthening of Swarm

Supporting evidence

Hemelrijk & Hildenbrandt, 2008; Kunz & Hemelrijk 2003

Larger schools shorter Nearest Neighbour Distance -> more frequent avoidance -> more oblong as a side-effect

Empirical study

Prof. dr. Eize Stamhuis (Marine Biology) and students

Empirical data of Mullets

Hemelrijk, Reinders, Hildenbrandt, Stamhuis (2010) Ethology

Corresponds to the patterns of the model!

Oblong form

Arises as a side-effect of coordination! – Due to falling back to avoid collision

Our model of starling flocks, StarDisPlay

(Hildenbrandt, Carere, Hemelrijk, 2010) Behavioural Ecology

Flocking model with:

- 1. local coordination (attraction, alignment, avoidance)
- 2. simplified aerodynamics of flying with banking while turning (Norberg, 1990)
- 3. attraction to the sleeping site (roost) (Carere et al 2009)
- 4. few interaction partners (6.5) (Ballerini et al 2008)
- 5. low speed variability

specific to starlings

also in fish model

Parameters From Starlings

Parameter	Description	Default value
Ди	Reaction time	50 ms
v ₀	Cruise speed	10 m/s = 36 km/h
М	Mass	80 g
C_L/C_D	Lift-drag coefficient	3.3
L _o	Default lift	0.78 N
D_0, T_0	Default drag, default thrust	0.24 N
n _c	Topological range (# Interaction partners)	6.5
r _h	Radius of max. separation ("hard sphere")	0.2 m
R _{Roost}	Radius fo Roosting Area	150 m

Flocking manouevres by self-organisation

(Hildenbrandt, Carere, Hemelrijk, 2010, Behavioural Ecology)

Model

Resemblance flocks of real starlings

(Hildenbrandt, Carere, Hemelrijk, 2010, Behavioural Ecology)

To empirical data from Ballerini *et al* (2008):

- -aspect ratios of flock shapes (10 events)
- -flat shape of flock
 - seldom oblong
- -orientation of flock
 - parallel to bottom
 - at the same height
- -distribution
 - distance and angle to nearest neighbours
 - density in front and back

Greater local variability

- Larger flock size
- Lower number of interaction partners
- Sharp turns related to environment
- Rolling while turning
- Higher speed variability (adjustability)

Higher variability of shape

Measure shape of flocks

Oblong shape (L/W): Paralel to movement direction Oblong shape: Aspect ratios (I_3/I_2) , (I_3/I_1) , (I_2/I_1) , of bounding box parallel to longest dimension

Flocks and schools are flat (I₁= thickness)

Measurements

Results

Default situation

N = 2000

Flying above the roost

Similar to empirical data of rock doves

Pomeroy & Heppner 1992

Model Experiments

Differences among individuals in behaviour:

- flock size (200, 2000)
- # interaction partners (6.5, 50)
- rolling or not when turning
- turning or not
- variability of (adjustable) speed

Small flocks cause relatively smaller changes in volume due to

- more similar condition (above roost, or outside)
- more global interaction in flock

Deviations of global velocity during movement approx. straightforward

temporary sub flocks

Larger flocks less synchronised

Larger groups have greater sub-flocks of similar speed deviation like in real starlings (Cavagna *et al* 2010)

Larger flocks: weaker global polarisation

Larger sub flocks differ in direction more → flock shape is more variable

High # interaction partners (50)

N=2000

causes stable shape due to more global interaction, stronger synchronisation

More interaction partners (50 vs 6.5)

More polarised \rightarrow more 'synchronised'

Causes of changes of volume and shape

More local differences -> more complex shape

Speed v_i , cruise speed v_0 Force to return to cruise speed

$$\mathbf{f}_{\tau_{\mathbf{i}}} = \frac{m}{\tau} (v_0 - v_i) \cdot \mathbf{e}_{\mathbf{x}_{\mathbf{i}}}$$

Variability of speed can hardly be increased: From coefficient of variation 0.01 to 0.015 Aerodynamic forces stabilise the speed

Higher variability (adjustability) of speed

-> more oblong in movement direction

Oblong in other directions

Turning behaviour and low variability of speed

causes changes in orientation of flock relative to the movement direction Angles of longest dimension with movement direction

Empirical relevance? ->

Resemblance to empirical data

(Pomeroy and Heppner 1992)

'Repositioning' in rock doves, dunlins and pewits

(Selous 1930; Davies 1980; Pomeroy and Heppner, 1997)

Maintainenance of shape relative to the traveling direction, by automatic slowing down in inner corner

Summary

Greater variability of shape of flocks arises from larger local differences in behaviour due to:

- larger flocks
- fewer partners for interaction
- rolling while turning
- reacting to a heterogeneous environment (sleeping site, attack by raptor)
- But **not** due to higher variability (adjustability) of speed....

Unexpectedly

Low variability (adjustability) of speed

High variability in orientation of the shape

Testable hypotheses

Greater locality of interaction

- in larger locks
- with fewer interacting neighbours
- in a heterogeneous versus uniform environment
- when rolling during turning

Testable hypotheses

Higher variability (adjustability) of speed induces

- more oblong shape in the movement direction
- fixed locations in the group during turns

Lower variability of shape

Testable hypotheses

Lower variability (adjustability) of speed induces

- Equal path length
- Repositioning during turns
- Change of shape relative to movement direction

Higher variability of shape

Financial support

- European framework, StarFlag
- NWO pilot grant
- Startup grant from Rosalind Franklin Fellowship