Reward, punishment and the evolution of cooperation

David G. Rand

Program for Evolutionary Dynamics Psychology Department Berkman Center for Internet & Society

Harvard University

www.DaveRand.org

What is cooperation?

The puzzle of cooperation

Evolution = Survival of the fittest

Yet cooperation is common

Integrated approach to the evolution of [human] cooperation

Behavior = snapshot of evolutionary process

Anonymous

Incentivized

Full information / no deception

Amazon Mechanical Turk

Online labor markets make experiments fast and cheap [and easy for theorists]

Short tasks (<5 min) for little money (<1\$) \rightarrow Performance-dependent payments

Quantitative replication of lab behavior

Horton Rand Zeckhauser, Experimental Economics, 2011 [PDF]

Evolutionary perspective

- Human psychology did not develop in lab
- \rightarrow Potential for mismatch
- → Interesting, but must be careful when interpreting

Explaining 'irrationality'?

Genetics vs cultural

Reciprocity

Repeated interactions

Conditional cooperation based on past actions

Direct reciprocity: Grim, TFT etc

Allows the evolution of cooperation

Costly punishment TFT 'punishes' defection (**D**) with defection (**D**)

Costly punishment is a new proposal **P**: you pay *A* to make other lose *B*

Costly punishment stabilizes cooperation in non-repeated games (1-shot or fixed length/name shuffled) Yamagishi 1986, Ostrom et al 1994 , Fehr & Gachter 2000, 2002

Evolution of punishment

"Punishment promotes cooperation – therefore we evolved the taste for punishment"

But what about truly repeated games?

Is it a good idea to punish defection in a repeated Prisoner's Dilemma?

Martin Nowak

Winners don't punish

Anna Dreber

Repeated 2-player Prisoner's Dilemma \rightarrow Control (C/D) vs treatment (C/D/P)

Pairs plays random # of PD rounds

- \rightarrow 3/4 continuation probability
- \rightarrow No info about partner's previous games

104 subjects, avg of 24 pairings, 79 PDs

Dreber Rand Fudenberg Nowak, Nature, 2008 [PDF]

Definitions

- C: you pay 1, other gets 2
- D: you gain 1, other loses 1
- P: you lose 1, other loses 4

	С	D	Р
С	1,1	-2,3	-5,1
D	3,-2	0	-3,-2
Ρ	1,-5	-2,-3	-5,-5

Cross-cultural replication

Study replicated in Beijing – punishment is even worse Wu et al PNAS 2009

Evolutionary dynamics

Experiments suggest punishment is maladaptive in repeated PD

Use evolutionary dynamics to ask what strategies evolve

Does natural selection favor the use of costly punishment after the opponent defects?

Direct reciprocity with costly punishment

Reactive first order strategies

	С	D	Р
Repsonse to C	р1	q1	1-p1-q1
Response to D	p2	q2	1-p2-q2
Response to P	р3	q3	1-p3-q3

Rand Ohtsuki Nowak, J Theoretical Biology, 2009 [PDF]

Equilibrium analysis

Cooperative punishers can be Nash eq.

If cost of $P \leq \text{cost}$ of C

For experimental params, there are cooperative punisher Nash strategies

In response to P, cooperative Nash always play C

Decision rule

Learner copies Teacher with probability P

Or with probability *u*, mutation occurs

Fit simulation model to data (1 free param τ = 0.8) \rightarrow Nash predicts only C in response to P Punishment disfavored over wide parameter range

Why punishment loses

Nash calc: never actually use P \rightarrow P is OK

Evolutionary model: punish mutants/poor learners

 \rightarrow P is costly

Same for Ultimatum, Centipede games

Evolution vs. rational choice

Nash equilibrium analysis not in agreement with behavioral data

Evolutionary model reproduces experimental behavior

Stochastic evolutionary dynamics may underlie development of strategies

From individuals to groups

Choose how much to contribute to a common pool

All contributions are multiplied by a factor and split evenly by everyone (regardless of contribution)

Cooperation breaks down in the lab

Punishment & public goods

Costly punishment stabilizes contribution Yamagishi 1986, Ostrom et al 1994, Fehr & Gachter 2000, 2002

Punishment better than [denial of] reward

Sutter et al 2006, Sefton et al 2007

Previous studies focused on end-game effects

Let's look at truly repeated games

Positive interactions promote public cooperation

Repeated 4-player public goods game, 192 subjects 20 unit endowment, 1.6x contribution multiplier

Four treatments. PGG followed by

Control: Nothing.

PN: Punish (-4 for you, -12 for other) or no action

RN: Reward (-4 for you, +12 for other) or no action

RNP: Reward, no action, or punish

Game length unknown to participants (50 rounds)

Rand Dreber Ellingsen Fudenberg Nowak, Science, 2009 [PDF]

Effect on contributions: All 3 treatments equally effective

Effect on % of max possible payoff All 3 treatments equally effective

Effect on total payoff:

Reward out-performs punishment Equal % possible payoff → better actual payoff

Reward use is stable

Previous experiments: reward use decays

But persistent identities & shadow of future maintain rewarding

Availability of rewards

Life Is full of chances to help each other (or not) in a non-zero way (PD)

Public life and private life are coupled

Denying future rewards (like TFT) is a non-destructive way to "punish"

Direct vs indirect reciprocity

Similar results for games with reputation

 \rightarrow Experimental Milinski et al., Science, 2002; Ule et al., Science 2009

 \rightarrow Theoretical Ohtsuki et al., Nature, 2009

Cross-cultural differences

PGG + reward or punishment in Romania

Control same as US No effect of RN or PN on contributions → Dramatic decrease in payoffs!

Why?

 \rightarrow PN: Anti-social punishment

 \rightarrow RN: Pairwise rewarding, ignoring group

Benedikt Herrmann

EU/ERC

Anti-social punishment

Inconsistent with rational self-interest

Contrary to most standard preference models

In opposition to concept of 'altruistic' punishment

Evolution of anti-social punishment

Excluded a priori from previous models

Does punishment promote cooperation when anti-social punishment is allowed?

Can we explain the evolution of anti-social punishment?

Local interaction & competition

'Viability updating'

Mixing population with limited interaction \rightarrow defectors that always punish

Lattice

→ defectors that punish cooperators (bad to punish own offspring)

Rand Armao Nakamaru Ohtsuki, JTB, 2010 [PDF]

Summary

People have a taste for punishment

But not necessarily because of cooperation

Punishment can 'self-interested'

Antisocial punishment and retaliation are dangerous

Society is best built on positive interactions

Collaborators

- 1. Dreber A, Rand DG, Fudenberg D, Nowak MA (2008) Winners don't punish. *Nature* **452**, 348-351.
- 2. Rand DG, Dreber A, Ellingsen T, Fudenberg D, Nowak MA (2009) Positive interactions promote public cooperation. *Science* **325**, 1272-1275.
- 3. Rand DG, Ohtsuki H, Nowak MA (2009) Direct reciprocity and costly punishment: Generous tit-for-tat prevails. *J Theor Biol* **256**, 45-57.
- Rand DG, Armao J, Nakamaru M, Ohtsuki H (2010) Anti-social punishment can prevent the co-evolution of punishment and cooperation. *J Theor Biol* 265, 624-632

www.DaveRand.org