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Introduction
Broad subject! So many aspects of traffic modeling, e.g.

Fully (cellular automata, numerical schemes ...) or semi-discrete
(ODE, delayed ODE ...) / Macroscopic (PDE (hyperbolic
(conservation laws? Hamilton-Jacobi? With diffusion and/or
relaxation?)

Or Mesoscopic (kinetic description)?

Multiscale (structure of traffic jams, ”phase transitions”,
homogenization, hybrid schemes ...)

(I): Instability, e.g. stop and go waves / (S): Stability: preserve
nonnegative speed (!) and (hopefully!) no crash ...

ODE description much better for (I) and PDE for (S) ... How to find
the right combination? Related question: if necessary, give priority to
ODE and use ”modified equation at higher order” for describing
specific effects?

Junctions, link with homogenization. Networks. Hybrid schemes ... I
won’t cover everything!
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The German car industry trying to catch up with its French competitors
(allegory).
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Discrete / Fluid Models

(Fully or) 1/2 discrete: Follow the Leader Models...
Car length: l = ∆X . Spacing:
τj := xj+1 − xj ; sj = 1/ρj = τj/l :
specific volume, density.





ẋj = vj =⇒ ṡj =
vj+1−vj

l

v̇j = F (xj , xj+1, vj , vj+1)

(e.g .) = αvm
j V ′( xj+1−xj

l )
vj+1−vj

l + β(Ve(
xj+1−xj

l )− vj)

(2.1)

Convective part (fast reaction) + (slow) relaxation part ...
Examples, see also Gazis-Herman-Rothery and ...

I α = 0, β > 0 : Bando’s Optimal Velocity Model
I α > 0, β = m = 0 : Aw-Klar-Materne-Rascle, SIAP 2002
I α > 0, β > 0,m = 0 : J. Greenberg and/or Aw-Rascle, SIAP 2000-2004
I Intelligent Driver Model (IDM): Helbing-Treiber, ∼ 2000

v̇j = a [1− vm
j − (

sb(vj )−vj (vj+1−vj )
sj

)2] ; sb(v) := s0 + s1
√

v + s2(v)
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Kinetic:

Fluid:
I First Order: Lighthill-Whitham-Richards (LWR) [ ↔ Hamilton-Jacobi]

∂tρ+ ∂x(ρv) = 0, v = V (ρ),V ′(ρ) < 0, (ρV )” < 0,

Fundamental diagram: flux q = ρV (ρ).
Riemann Pb: ρ(x , 0) = ρ± for ±x > 0 :
- centered rarefaction waves (acceleration) if v− < v+ ,
- shock waves (braking) if v− > v+. Very robust, (too) stable. Figures.

I Second Order: Payne-Whitham (cf Gas Dynamics)
{
∂tρ+ ∂x(ρv) = 0,

∂tv + v ∂xv = −ρ−1p′(ρ)∂xρ+ ... := −p̃′(ρ)∂xρ+ ...

I Daganzo (Requiem, 95) PW is a terrible model!! [Diffusion still worse !]
Paradoxes: 1: v < 0 and 2: λ2 = v + c > v !!

I Aw-Rascle (Resurrection ?, 2000), Zhang(2002). Fixing:
∂xp → ∂tp + v∂xp

I Second equation in (PW) becomes:

∂tv + v ∂xv = −p̃′(ρ)(∂t + v∂x)(ρ)
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The Fluid Model. Eulerian System
Therefore, setting (new) p(ρ) := p̃(ρ),

{
∂tρ+ ∂x(ρv) = 0,

∂tw + v ∂xw = 0.
(3.1)

Here, w : Lagrangian marker (”color”) defines the fundamental
diagram, e.g. w := v + p(ρ) := v + vmax − V (ρ) or (better)
w := v − V (ρ), could be much more general (aggressivity, origin,
destination, alive (?) for pedestrians, size of a file ...)

In conservative form, the system becomes (E):

{
∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0
(3.2)

Here V (ρ) is a known function, with V ′(ρ) < 0 and (strict concavity,
again can be extended !), λ1 is GNL: either shocks or rarefactions
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Riemann Problem (RP). (Very) quick version

Riemann Problem: IVP with U(x , 0) = U± for ±x > 0

Strictly hyperbolic system, (except for ρ = 0 ...)

Eigenvalues of 2x2 matrix : λ1(U) = v + ρV ′(ρ) < λ2(U) = v

λ1 : genuinely nonlinear rarefaction (acceleration) or shock (braking),
whose curves coincide here, since (Rankine-Hugoniot) [ρ(v − σ)] = 0
and [ρw(v − σ)] = ((ρ(v − σ)±) · [w ] = 0. Q: Why?

λ2 is linearly degenerate : 2-contact discontinuity.

Diagonalization: Riemann invariants (say on road i) :

w(U) := wi (U) = v − Vi (ρ) and v(U) = v
∂tw + v ∂xw = 0, ∂tv + λ1,i (U)∂xv ≈ 0
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Solution of Riemann Pb with initial data U− and U+: first find U0

with same w as U− and same v as U+. Then, see Figure,
construct:

I a 1− wave connecting U− and U0 by a shock or rarefaction as for first
order model, with fundamental diagram v = V (ρ) + w(U−) , followed
with vacuum state if v− < vmax(w−)vv+, see Remark below :

F a rarefaction: w(U0) := v0 − V (ρ0) = w(U−), if v0 = v+ > v−,
F or a shock: w(U0) := v0 − V (ρ0) = w(U−), if v+ > v− (coinciding),

I followed by a 2− wave between U0 and U+: contact discontinuity:
v0 = v+

In all cases,if d(U1,U2)) := |v1 − v2|+ |w1 − w2|, then (BV
estimates) (no wild oscillation)

d(U−,U+) = d(U−,U0) + d(U0,U+),

and (bounded) rectangles in (v ,w) plane are invariant regions:
L∞ estimates. No more paradox 1 (v < 0) or 2 (λ2 > v ≥ 0). No
crash if no crazy driver (again, invariant region) ... Compare with
PW, or Bando!
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Remarks

Coinciding curves, since the ”color” does not change when braking!

Exercise 1: in the general case: v = V (ρ,w) with V (.,w) strictly

decreasing, show that λ1 = V + ρ∂V (.,w)
∂ρ , i.e. λ1 is the slope of the

tangent to the curve: ρ 7→ ρ.v in the (ρ, ρ.v) plane. Compare to
Rankine-Hugoniot for first equation ...

Exercise 2: ... and that λ1 is GNL iff this curve is either strictly
concave or strictly convex. Moreover, in the first case, show that
braking corresponds to a shock and conversely: instantaneous braking.

Under these assumptions, show that vacuum appears in Riemann
Problem iff v− < vmax(w−) < v+. In this case, we define ”vacuum”
(although there can be many cars ahead ...) as the region
{tvmax(w−) < x < tv+}. Note that this region is not accessible to
the cars U−.
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Riemann Pb in (v ,w) plane here with
w = v + p(ρ) = v + vmax − V (ρ). BV estimate:
d(U−,U+) = d(U−,U0) + d(U0,U+). No oscillation ...

v

vmax

wwmax

U+

U−

U0

w = v ⇐⇒ ρ = 0

!(   )x, 0

x0

*

*
you

!(   )x, 0

x0

*

*
you

First motivation: x or t dependence? Do we react to flow variations in
x or t : if the ”wave” is faster than you, should you brake (cf gas
dynamics), or accelerate (cf our model)?? Compare:
∂tv + v ∂xv = − ∂x p̃(ρ) or = −(∂t + v ∂x)(p̃(ρ))
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Motivations. Lagrangian version
Lagrangian mass coordinates (Courant-Friedrichs)

From mass conservation,

∂t∂xX = ∂x∂tX ; X (x , t) =

∫ x

−∞
ρ(y , t)dy

Essentially, X = −N, N : cumulated flow. Discrete Xj = position of
car j if parked nose to tail. Also, s is additive (on a single lane), not ρ
!! Important for homogenization.

s and ρ are adimensional (occupancy), therefore invariant in a
hyperbolic scaling: let a zoom parameter ε→ 0 and
(x ′, t ′,X ′,∆t ′,∆X ′) := ε (x , t,X ,∆t,∆X )
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Remarks. Exercises:

Show details of the change of variables: {(x , t) 7→ (X ,T := t)}.
Compute the partial derivatives in (x , t) in terms of those in (X ,T )
and conversely.
Show that the mass conservation in Eulerian system (E) implies the
first equation of (3.5) below (conservation of space).
What happens in the above change of variable when vacuum occurs?
Show that the two systems (E) and (3.5) have the same strict
Riemann invariants v and w , and that a characteristic speed λE for
(E) corresponds to a characteristic speed λL for (3.5), with
λE = v + ρ.λL. Solve the Riemann Problem for (L).
Show that in the general case v = V1(ρ,w) = V (s = 1/ρ,w), for any
entropy-flux pair (η(s,w), q(s,w)) for (3.5), i.e. for any additional
conservation law of the form:

∂tη + ∂Xq = 0,

satisfied by any smooth solution of (3.5) q must be an arbitrary
smooth scalar function of v = V (s,w). If {s → V (s,w)} is
increasing and concave, check that the entropy η is convex in s iff q
is concave in v .M. Rascle (Université de Nice) Mathematical Models of Traffic Flow March 25, 2011 18 / 69



Link with microscopic Models (FLM)
Follow The Leader Model (FLM) . We set w = v − V (ρ) or v − V (s)





ẋj = vj =⇒ ṡj =
vj+1−vj

∆X

v̇j = V ′
(
xj+1−xj

∆X

)
vj+1−vj

∆X = V ′(sj)ṡj

(3.3)

Equivalent form (FLM’):




ṡj =
vj+1−vj

∆X

ẇj = 0 ; wj := vj − V (sj)

(3.4)

When ∆X → 0, (FLM’) formally (in fact, rigorously) CV to
Lagrangian System (L) (which is ⇔ Eulerian System (E)):

{
∂ts − ∂X v = 0 , s := ρ−1 ,

∂tw = 0 , w = v − V (s) := v − Ṽ (ρ).
(3.5)
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Now the first order Euler explicit discretization of (FLM’):

{
sn+1
j = snj + ∆t

∆X (vn
j+1 − vn

j )

wn+1
j = wn

j = .... = wj ...
(3.6)

is exactly the Godunov approximation of Lagrangian system and
(exceptional) has the same stability as the Riemann Pb (in each
Lagrangian cell, v is monotonous, since w = C ).

Therefore, when ∆t → 0, with ∆X fixed, (3.6) CV to (FLM’) which
inherits the same invariant regions and BV-stability properties
(not obvious directly!).

Even for weak solutions (Wagner, 87) (L) is equivalent to system (E).

Eigenvalues become: λ1 = −V ′(s) < 0 (GNL), and λ2 = 0 (LD), with
same Riemann Invariants v , w and same structure (coinciding ...)
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Lagrangian Godunov Scheme
tn+1

tn

Un
j Un

j+1

Un
j+1/2

xj−1/2 xj+1/2 xj+3/2

t

x

Un
j

wn
j , vn

j+1

Un
j+1

xj+1/2

xn
j+1/2

xn+1
j+1/2

Un
j−1

Un+1
j−1

Un
j

Un+1
j

Un
j+1

Un+1
j+1

In Eulerian moving coordinates, xn+1
j+1/2 = xn

j+1/2 + ∆t vn
j+1. Therefore





sn+1
j =

xn+1
j+1/2

−xn+1
j−1/2

∆X = snj + ∆t
∆X (vn

j+1 − vn
j ),

wn+1
j = wn

j = .... = wj

(3.7)

the Godunov scheme for (3.5) is exactly (3.6) and defines numerically the
trajectories. Finally, as w remains constant in each cell, by monotonicity,
the new v = vn+1

j = wn+1
j + V (sn+1

j ) is between vn
j+1 and vn+1

j .

M. Rascle (Université de Nice) Mathematical Models of Traffic Flow March 25, 2011 21 / 69



Case with relaxation: Fractional Step

Prototype:

{
∂ts − ∂X v = 0 , s := ρ−1 ,

∂tw = Ve(s)− v , w = v − V (s) := v − Ṽ (ρ).
(3.8)

First half step: as above , now called Un+1/2:

{
s
n+1/2
j = snj + ∆t

vn
j+1−vn

j

∆X ,

w
n+1/2
j = wn

j , v
n+1/2
j = wn

j + V (s
n+1/2
j ).

(3.9)

Second half-step: s
n+1/2
j = s

n+1/2
j . Approximate the ODE (3.8,ii):

{
wn+1
j = e−∆t .w

n+1/2
j + (1− e−∆t).Ve(s

n+1/2
j ),

vn+1
j = wn+1

j + V (s
n+1/2
j ).

(3.10)
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Example of application: hybrid Lagrangian schemes

Here without relaxation, joint work with S. Moutari (SIAP 2008)

»Outline

Traffic flow models

Intersections modelling of

vehicular traffic flow

Multicommodity models on road

networks

Hybrid modelling

» L-L Coupling

The modelling of traffic jams

Conclusion and Outlook

– Nice, December th 14th 2007 – ← → M. Salissou M. MOUTARI — Mathematical and numerical modelling of vehicular traffic flow — Page 53

L-L Coupling of the AR model

Eulerian-Lagrangian Coupled is fully heuristic.

Difficulties of the E-L Coupling: definition of the interface

fonctioning, mass conservation etc...

One of the solutions: Lagrangian-Lagrangian (L-L) Coupling.

(AR− L/Micro)





τn+1
j = τn

j + ∆t
∆X

(
vn

j−1
− vn

j

)
,

wn+1
j = wn

j ,

(AR− L/Macro)





τn+1
j = τn

j + ∆t
N∆X

(
vn

j−1
− vn

j

)
,

wn+1
j = wn

j ,

Macroscopic model Macroscopic model

Actual Microscopic Region (AMR)

Minimal Microscopic Region

(MMR)

. . .. . . . . . . . .
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Lagrangian interfaces, minimal fixed Eulerian microscopic region

»Outline

Traffic flow models

Intersections modelling of

vehicular traffic flow

Multicommodity models on road

networks

Hybrid modelling

» L-L Coupling

The modelling of traffic jams

Conclusion and Outlook

– Nice, December th 14
th 2007 – ← → M. Salissou M. MOUTARI — Mathematical and numerical modelling of vehicular traffic flow — Page 54

L-L Coupling of the AR model

Macro-Micro synchronization

i+ 1 i (i− 1)N (i− 1)N − 1

i1iN

N∆X

∆X

Li

Li/N

Macroscopic cell

Microscopic cells

Minimal
Microscopic
Region (MMR)

. . .

. . .. . .

. . .

ij ij − 1

xij xij−1

Li
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L-L Coupling of the AR model

Micro-Macro synchronization

i− 1

i

(i + 1)1(i + 1)2 i1iN

N∆X

∆X
xiN xi1

lij

Macroscopic cell

Minimal
Microscopic

Region (MMR)

. . .
. . .. . .
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L-L Coupling of the AR model

Numerical simulations
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Passing to the limit(s) (without relaxation)

Thanks to uniform BV estimates and invariant regions, we can
either let ∆t → 0, with ∆X fixed: (GOD) ≡ the explicit Euler
scheme CV to (FLM), with again same BV and L∞ estimates (again,
not obvious directly!) Finally and then (FLM) ≡ the
semi-discretization CV to (L), when ∆X → 0.

Exercise: check details: BV estimates à la Glimm, convergence,
uniqueness: ”Krushkov”:
ηk = sgn(v − k).(S(v ,w)− S(k ,w)); qk(v) = −|v − k |.

or start again from (GOD), then let ∆X and ∆t → 0 together with a
fixed ratio and CFL condition: then (GOD) CV to the same unique
solution to (L): commutation of limits.

By-product: (FLM) CV to (L): that can be used directly, avoiding
scaling pbs (especially with a relaxation term), cf Colombo,
Marcellini, Rascle, to appear SIAP. Similar results in singular limit
works with Berthelin, Degond, Delitala et al ...
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With no relaxation term, this procedure combines nicely with a
hyperbolic scaling, with a zoom parameter ε→ 0: and
(x ′, t ′,X ′,∆t ′,∆X ′) := ε (x , t,X ,∆t,∆X ).
ρ, s, v, system (L) and (God) are unchanged in this scaling, but not
the initial data

U0(X , εX ) := U0(
X ′

ε
,X ′)

Therefore, if there is no small scale X ′

ε in the initial data the
solution of (God) converges to the (unique) solution of (L) when
ε→ 0: with Aw-Klar-Materne-Rascle, SIAP 2002)
Independent, formal M. Zhang (2002)
First ∃ result (no scaling): J. Greenberg (SIAP 2001), with Relax,
(sub)”characteristic” case; Aw, PhD
If ∃ small scales in initial data (oscillations in w and s), homogenize
: with P. Bagnerini, SIMA 2003, cf also Hamilton-Jacobi approach...
Oscillations in w (mixture) on outgoing roads in junctions: with
Herty, Moutari, see further

Summary: start from (FLM’), make ρ = ρj(t) (constant in space)
(Eulerian) or s = sj(t) (Lagrangian) between two cars j , j + 1 ...
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On a network. Cauchy Problem

We do not specify here the relations with exterior world ...

Conservative form on each road, with the same choice:
yi = ρiwi = ρi (vi − Vi (ρi )).:

∂t

(
ρi
yi

)
+ ∂x

(
yi + ρiVi (ρi )
yi (yi + ρiVi (ρi ))/ρi

)
= 0,

with the previous choice: yi = ρiwi = ρi (vi − Vi (ρi )).

Rankine-Hugoniot conditions through a junction, with {bi , i ∈ δ−}
(incoming roads) and {aj , j ∈ δ+} (outgoing roads):

∑

i∈δ−
(ρivi )(b−i , t) =

∑

j∈δ+

(ρjvj)(a+
j , t)

∑

i∈δ−
(ρiviwi )(b−i , t) =

∑

j∈δ+

(ρjvjwj)(a+
j , t)
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In other words, a weak (entropy) solution on a network must :

be a weak (entropy) solution on each road i

conserve the total number of cars and also the total number of cars of
each ”color” w , at all junctions, where

∀i ∈ δ− : incoming, and for all j ∈ δ− : outgoing road, the unknown
limit values U+

i at bi − 0 and U−j at aj + 0 (Attention !!), have to be
determined below.

At an arbitrary junction, we want to solve the Riemann Problem, i.e.
the Initial Value Problem, by solve a half- Riemann Problem on each
road, in which the speed of all (centered) waves is constrained to be
≤ 0 on ingoing roads and ≥ 0 on outgoing roads.
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Ingoing Half-Riemann Problem

Consider an ingoing road, and assume that we knwow its actual
outgoing flux q at the junction.

Then we would like to connect the left Riemann data U−i = (ρ−i , v
−
i )

through a 1-wave of nonpositive speed to a state

U+
i = {wi (U) := vi − Vi (ρ) = wi (U−i )} ∩ {ρv = q}

This is not always possible, see Figure below, and moreover we would
like q to be as large as possible.

Definition (Lebacque): The demand d(U−i ) := is the maximal
possible flux q = ρv, for any U connected to U−i by waves of
nonpositive speed (necessarily 1−waves) and satisfying

wi (U) := vi − Vi (ρ) = wi (U−i ).

We recall that eventually the actual U+
i = Ui (bi − 0, t) (in) and

U−j = Uj(aj + 0, t) (out) must satisfy Rankine-Hugoniot.
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Demand. Figure
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w(U)=c
d(ρ; w, c)

Graph of the demand d(U): in uncongested regime, i.e. if ρ−i < ρ̃ (the
sonic point), then the maximal flux q̃ at a point U on curve
w(U) = w(U−i ) which can be connected with U−i by a wave of speed ≤ 0
is reached for U = U−i itself (and the other point on this curve with same
flux). Conversely, if ρ−i > ρ̃, then q̃ corresponds to ρ = ρ̃, i.e. to the
maximal possible flux on this fundamental diagram: wi (U) = wi (U−i ).
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Outgoing Half Riemann Problem

On the outgoing axes, we want to connect the right Riemann data
U+
j = (ρ+

j , v
+
j ) to a state U−j by waves of nonnegative speed(s).

First connect U+
j = (ρ+

j , v
+
j ) through a 2-contact discontinuity (of

speed v +
j > 0) to a first intermediate state U∗j , still unknown

Here, U∗j comes from road i , but is on road j . Therefore

wj(U∗j ) := w∗j := wi (U−i ) !!.

If, e.g. wj(U∗j ) := w∗j = wi (U−i ) = 20 km/h, this (same) driver will
drive 20 km/h faster than Vi (ρ) on road i and than Vj(ρ) on road j :
whatever the road conditions are, he likes to drive 20 km/h faster
than the local V (ρ). So

U∗j = {wj(U) := v − Vj(ρ) = w∗j } ∩ {v = v +
j }

Now, as for the demand, we define the supply associated with the
state U∗j and the above fundamental diagram: wj(U∗j ) = wi (U−i ).
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Supply

Again, assume we know the actual ingoing flux at the junction on this
outgoing road j . Then, having already connected U+

j to U∗j by a
2−wave (of speed ≥ 0), we would like to connect U∗j , through a

1-wave of nonnegative speed, to a state U = U−j , still unknown,

which will play near x = 0+ the same role as U+
i near x = 0−

(Attention !). Therefore, if this is possible,

U−j = {wj(U) = w∗j } ∩ {ρjv = q},

with hopefully q as large as possible.

Definition (Lebacque): The supply s(U∗j ) is the maximal possible

flux q = ρv, for any U = U j
− connected to U∗j by waves of

nonnegative speed and satisfying

wj(U) = w∗j = wi (U−i ).
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Supply: Figure
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Graph of the supply s(U): in uncongested regime, i.e. if ρ−i < ρ̃ (the
sonic point), then the maximal flux q̃ at a point U on curve
w(U) = wj(U∗j ) which can be connected with U∗j by a wave of speed ≥ 0
is reached for U = U∗j itself (and the other point on this curve with same

flux). Conversely, if ρ−i > ρ̃, then q̃ corresponds to ρ = ρ̃, i.e. to the
maximal possible flux on this fundamental diagram:
wj(U) = wj(U∗j ) = wi (U−i ).
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Riemann Problem at a junction: Principle ...
On all ingoing (resp. outgoing) roads i (resp. j), the initial datum
U−i (resp. U+

j ) is known, and the actual outgoing (resp. ingoing) flux

q := qi given by U+
i (resp. qj given by U+

i ) at the junction must
satisfy the two Rankine-Hugoniot conditions (RH).

Full solution of the Riemann Pb in the case of a 1-1 junction: one
ingoing (road 1) and one outgoing road (road 2), (e.g. asphalt-dirt
road, or bottleneck ...): the maximal possible flux at junction is

q = q1 = q2 = min(d(U−1 ), s(U∗2 )).

Note that U∗2 is uniquely defined by the Riemann data U+
2 and U−1 .

That defines two (in fact, a.e. a unique possible state on each road,
e.g. U+

1 := U−1 if q = q−1
The solution is uniquely defined: U−1 |U+

1 ||U−2 |U∗2 ...U+
2 . Moreover,

in the particular case of a first order model (LWR), w is constant on
each road and U∗2 = U+

2 . In this case, we retrieve the same results as
e.g. Garavello-Piccoli.
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1-1 Junction: Example

1-1 Junction: Example
One of the two waves below appearseither on ingoing
road 2 (left) or on outgoing road 3 (right). The actual
flux is: q = min(d(U−

2 ), s(U
∗
3 )), and on road 3,

w3(U
∗
3 ) = w2(U

−
2 )!!, with here:Vi(ρ) = Vmax − pi(ρ)

andwi = vi − Vi(ρ) + Vmax = vi + pi(ρ).
ρ2v

ρ2

d(ρ2;w2;w2(U
−
2 ))d2

U+
2

w2 = w2(U
−
2 )

U−
2

σ2

q2 < d2

v = v+3

q3

ρ3v

ρ3

U−
3

U∗
3

U+
3

w3 = w3(U
∗
3 )

s(ρ3;w3;w3(U
∗
3 ))

1− r

0 Road 3 x

t

U−
3 U∗

3

U+
3

2− cd

1− s

Road 2

U−
2

U+
2

– p. 10/20
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2-1 junction: Homogenization
• Example : two incoming roads1 and2, with resp.

black and white cars, with equal priority, and one
outgoing road3

• Then cars mix up on road3, with average grey
color. At the limitε → 0 we need a homogenized
model (with conservation of the number of cars
of each "color": (RH,ii)) ...

Figure 3: On an outgoing road ... – p. 11/20
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Back to Homogenization
(with P. Bagnerini, sometimes here with different notations: s := τ = 1/ρ
and w = v − V (s) or v − V (τ). We consider a sequence of exact or
approximate solutions, e.g. the Godunov approximation, possibly with one
car per cell, to the Lagrangian system (3.5):

{
∂ts − ∂X v = 0 , s := ρ−1 = τ ,

∂tw = 0 , w = v − V (s) := v − V (τ).

with initial data (or boundary conditions, at a junction) oscillating in w
and τ (but not in v : that would be too dangerous! .. and these
oscillations would be ”killed” by the genuine nonlinearity). Typically, the
mesh size in X and t is of order ε. We assume that:

v ε0 → v∗0 ; w ε
0 ⇀ w∗0 := w∗

In the corresponding solution, the velocity v∗ is the strong limit of the non
oscillating sequence (v ε: v∗ is the master unknown (BV) function ...
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But oscillations are preserved for w ε ≡ w ε
0 and for any function

F (v ε,w ε), e.g. for τ ε

For any F , weak limit (= “average”) is described by Young measure :
< νX ,t , F (v ,w) >:=

∫
F (v ,w)dνX ,t(v ,w)

Since v ε strongly converges, and since w is time-independent, the
above integral equals
< µX , F (v∗(X , t),w) >:=

∫
F (v∗(X , t),w)dµX (w)

ν and µ : probability measures, in v ,w and in w respectively.

M. Rascle (Université de Nice) Mathematical Models of Traffic Flow March 25, 2011 41 / 69



The homogenized w is therefore: w∗ :=< µX ,w >

Since V (τ) := Ṽ (τ−1) is strictly monotonous,
τ = V−1(v − w) = T (v ,w) := T (v(X , t),w(X )). Therefore, passing
to the limit in the distribution sense in the Lagrangian system (3.5),
we see that the homogenized τ , i.e.the weak-* limit of τ ε:





τ∗(X , t) := T ∗(X , v∗(X , t) :=

< µX , V−1(v∗(X , t)− w) >=< µX , T (v∗(X , t),w) >

=
∫

T (v∗(X , t),w) dµ(w) := T ∗(X , v∗(X , t))

(4.1)

is a weak solution (and in fact, using classically Jensen’s inequality in
the averaging step of the Godunov scheme, is) an entropy weak
solution to:

∂tT
∗(X , v∗(X , t))− ∂X v∗ = 0 ... (4.2)
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In (4.2), τ∗ is naturally a function of v∗ and X . We could invert
again the roles of τ and v and write

∂tτ
∗ − ∂XF (X , τ∗) = 0, (4.3)

scalar conservation law whose flux is discontinuous in X , with
∂F : ∂τ > 0: no resonance ...

Integration in X of (4.3) leads to Hamilton-Jacobi equation : in
periodic case, cf Lions-Papanicolaou-Varadhan.

Here, by monotonicity, we deal directly with (4.2), and use the
informations on Lagrangian system (L). In particular, an entropy η is
convex in τ iff the associated flux q ≡ q(v) is concave in v

Def: v∗ is an entropy solution to (4.2) if ∀k,

∂t |T ∗(X , v∗(X , t))− T ∗(X , k)| − ∂X |v∗(X , t)− k | ≤ 0, (4.4)

which is equivalent by monotonicity to

∂t < µX , |V−1(v∗(X , t)− w)− V−1(k − w)| >
−∂X |v∗(X , t)− k | ≤ 0.

Theorem: ∃ a unique entropy solution to (4.4)
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2-1 Junction: Example

Here, incoming roads 1 and 2 merge on outgoing road 3, with
proportions α and 1− α.

Typically, if e.g. α = 1/2, then ∀F (v ,w),
< µX , F (v ,w) >= 1

2 (F (v ,w−1 ) + F (v ,w−2 ))

Again, since V3(τ) is monotonous, we set: T3(v ,w) := V−1
3 (v − w),

and the homogenized τ : τ∗(X , t) := T ∗3 (X , v∗(x , t) is given by:





τ∗(X , t) =< µX , T3(v∗(X , t),w) >

:= 1
2 (T3(v∗(X , t),w1) + T3(v∗(X , t),w2))

= 1
2 (V−1

3 (v∗(X , t)− w1) + V−1
3 (v∗(X , t)− w2))

(4.5)

For any given v , the 1 and 2-drivers share the spacing, as in Figure 1.

For any v = v∗(X , t), the homogenized τ is uniquely defined by (4.5)

If v varies, this relation defines a.e. in X a unique homogenized
fundamental diagram, here in Lagrangian coordinates, associated
with the average w∗ = (w1 + w2)/2 =< µX ,w >.
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These two relations describe the average conservation of space:
Attention: τ is additive, not ρ! and the conservation of the
average number of cars of each ”color”.

The Eulerian counterpart is described in Figure below, from which one
can construct the homogenized supply (or demand) on road 3.
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Homogenized supply
The supplys on road 3 corresponds to the green/blue
curve and to the unique pointU ∗

3 on this curve with
velocityv+3 , with hereV ∗ = V ∗

3 , w = w∗ := w̄

w = w̄

ρ3v

ρ3

U+
3

U∗
3

v = v3

v = vc

U−
3

w = w1

w = w2

s(ρ3, w3, w̄)

q∗3

s3(v3, β1)

Note that the flux is maximal if aggressive drivers
(coming here from road1: bigger flux) take over ...
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Conclusion on junctions

If there are several incoming roads and if w has an influence on the
preferred velocity, then homogenization is needed on the ougoing
roads

Other ingredients are unchanged, e.g. here, in a 2− 1 junction with
equal fluxes, compare d1, d2 (incoming) to (homogenized) outgoing
1
2 s3

In the general case, an additional criterion is needed: either impose
ratios between ingoing fluxes or maximize total flux, and keep track of
the destinations on outgoing roads. Note that the origin and
destination can be vievew as additional components of w ...)

The best way to maximize the total flux is to let the aggressive
drivers take over ...

The calculations of the homogenized problem are not that
complicated, in fact are trivial if τ is initially defined wrt v , as in
some discrete models, e.g. the Intelligent Driver Model ...
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Whitham Subcharacteristic Condition

If we use the same hyperbolic scaling, relaxation term becomes
1
ε (Ve(ρ)− v), with ε→ 0 : zero-relaxation limit problem.

Whitham Subcharacteristic Condition is then necessary for stability:
(SC) : on the equilibrium curve: v = Ve(ρ), the characteristic speed
of the formal equilibrium system, here

∂tρ+ ∂x(ρVe(ρ)) = 0

must be between the two eigenvalues of the non-equilibrium system:

{
∂tρ+ ∂xq = 0, q = ρv ,

∂tw + v ∂xw = R(ρ, v) := 1
ε (Ve(ρ)− v) :

(5.1)

i.e. ⇔ 0 < V ′e(ρ) < V ′(ρ): ”Convection must dominate
relaxation”. Pb: if so, our previous model is too stable (TVD),
many others, e.g. Bando, too unstable ... Intermediate case?
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We assume e.g. that there is more than one small parameter, (e.g.
two in the IDM, ) and mostly a relaxation time small, but
nonzero. In addition, we assume that some weak form of (SC) is
satisfied and prevents from crashes (Bando) or negative velocities
(PW) (invariant regions).

With a suitable fixed scaling, the RHS is a Lipschitz function of the
solution. Therefore, the classical results (existence, uniqueness,
continuous dependence in L1 ...) apply. Of course, we lose the TVD
property. Traveling wave solutions are ”generic”:

Thm (Le Roux) For a large class of systems, including (5.2) below ,
traveling waves are ”generic” in the sense: any smooth ”simple
wave”, i.e. any smooth solution whose all components are functions
of one of them, (e.g. of ρ) must be a traveling wave.
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Smooth ”simple waves” are generically Traveling Waves

Recall: simple waves are the ones which emerge in large time behavior

Of course, discontinuous solutions (shocks or contacts) persist, since
they can’t ”see” the relaxation term. In contrast, in some sense,
”T-waves replace rarefaction waves when there is a RHS”.

Proof of Thm:{
∂tρ+ ∂xq = 0, q = ρv ,

∂tw + v ∂xw = R(ρ, v) := (Ve(ρ)− v) :
(5.2)

Assume that v , q and w = v − V (ρ) are (unknown) functions of ρ.
Then by (5.2,i), we have

∂tρ = −q′(ρ)∂xρ. (5.3)

Now divide (5.2,ii) by R(ρ, v) and use (5.3) to obtain, for some
unknown function F ,

F ′(ρ)∂xρ = 1.
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Therefore F (ρ(x , t)) = x − A(t). Now, multiply (5.2,i) by F ′(ρ), so
that, for some function A

F ′(ρ)∂tρ = −A′(t) = −F ′(ρ).q′(ρ)∂xρ = −q′(ρ).

Differentiating this relation in x or in t shows first that q”(ρ)∂x ρ ≡ 0
and then, using (5.3), that
A”(t) = q”(ρ) ∂tρ = −q′(ρ)q”(ρ) ∂xρ ≡ 0.
Therefore, the solution is a function of x − A(t) = x − ct.

Of course, this is only true locally ...

In the sequel, we will work in Lagrangian coordinates. We consider
{
∂ts − ∂X v = 0,

∂tw = R(s, v) := Ve(s)− v ,
(5.4)

assuming there are given reasonable functions such that the relations

v = V (s,w)⇔ w = W (s, v)⇔ s = S(v ,w)

are equivalent and that, e.g. for w = v − V (s), we have:

v = V (s)+w = V (s)+We(s) = Ve(s))⇔ w = We(s) = Ve(s)−V (s)
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J. Greenberg’s periodic solutions for ARG. Extensions

Here, we show how to construct periodic solutions of (5.4) with one
T-wave U−U+ and one adjacent shock U+U−.

First, we seek a T-wave U(ξ) := U(X + ct), c > 0 (U travels
backwards) in Lagrangian coordinates, with e.g. w = v − V (s)

Subcharacteristic Condition: −V ′(s) < −V ′e(s) < 0 only satisfied on
eq. curve for small or large s: invariant regions v ≥ 0, no crash ...

A T-wave connecting U− to U+ must satisfy: cṡ − v̇ = 0 and
(therefore) on the straight line U−U+, we must have:

ṡ(ξ) =
R(s, v = cs + C )

c(c − V ′(s)
:=

N

D
: N and D must vanish together, i.e.

D must vanish at the intersection pointU0 := U−U+ ∩ {v = Ve(s)}:
since D = c d

ds (w(s, v = cs + C )), the level curve {w(U) = w(U0)}
must be tangent at U0 to the straight line U−U+.
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M. Rascle (Université de Nice) Mathematical Models of Traffic Flow March 25, 2011 55 / 69



Existence of such a solution (heteroclinic orbit) by intermediate
value Theorem, when U± ∈ ”(SC) stable” region of {v = Ve(τ)}.
Figure. Uniqueness??

Similar solutions exist with nearby endpoints U± not at rest (thus
reached in finite time), with w(U−) = w(U+). Then the T-wave can
be interrupted (before reaching equilibrium) by an adjacent shock
wave U+U− with same speed (Rankine-Hugoniot): ∃ periodic
solutions, typically on a ring road

Stability of such waves? How relevant is linear stability analysis ??

M. Rascle (Université de Nice) Mathematical Models of Traffic Flow March 25, 2011 56 / 69



An example: the Intelligent Driver Model

With some modifications (e.g. on the length l) this model writes





ẋj = vj ,

v̇j = a [1− (
vj
v0

)m − (
sb(vj )−vj

vj+1−vj
2ab

xj+1−xj−l )p],
(5.5)

where
sb(v) := s0 + s1

v

v0
+ Tv ,

(note: desired spacing as a function of v , not the converse!),
with m = 1, 2 or 4, p = 1 or 2, and

a = b = 1m/s2; v0 = 33m/s : l = 5m; s0 = 1m; s1 = 10m; T = 1sec .

We introduce reference quantities: xr , tr , vr . Assume that vr = xr/tr = v0.
Two (small) dimensionless parameters appear ε := l

xr
, µ := a l

v2
0
.

Typically, we choose: xr = 1000m ; tr = 30sec , vr = v0 = 33m/sec ...
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so that ε := 5
1000 = 1

200 = µ := 5
332 .

The term:
xj+1−xj−l

xr
becomes:

xj+1−xj
ε − 1 := sj in rescaled coordinates,

and the system rewrites





ṡj =
vj+1−vj

ε ,

v̇j = µ
ε [1− vm

j − (
sb(vj )−vj εµ

vj+1−vj
ε

sj
)p],

(5.6)

with now sb(v) := a0 + a1v + a2v and a0 = s0
l , a1 = s1

l , a2 = Tv0
l .

Now, first µ = ε and next, say for p = 1, (5.6,ii) rewrites:

v̇j = [A(v)− sb(vj)/sj ] + (vj/sj) ṡj , with A(v) := 1− vm
j . (5.7)

Now, multiply both members by 1/vj (integrating factor), and define
w = W (s, v) := ln(s/v). Note that: 1

v v̇ − 1
s ṡ = ∂W

∂v v̇ + ∂W
∂s ṡ = ẇ . The

above equation rewrites:

ẇ =
1

v
[A(v)− sb(v)

s
] =

A(v)

v
[1− se(v)

s
], (5.8)
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with se(v) := sb(v)
A(v) . Finally, we obtain:

{
ṡj =

vj+1−vj
ε ,

ẇj =
A(vj )
vj

[1− se(vj )
sj

] ; w = ln(s/v),

whose natural macroscopic version is thus (cf (5.4):

{
∂ts = ∂X v ,

∂tw = A(v)
v [1− se(v)

s ] ; w = ln(s/v),

for which e.g. {0 ≤ v ≤ vmax ; 0 < wmin ≤ w = s/v} is invariant.

For p = 1, the natural macroscopic version of IDM is a
particular case of ARG model.

Forp = 2, idem if we neglect the term quadratic in (vj+1 − vj),
which is legitimate if µ << ε.

Natural question: can we exhibit Traveling Waves ARG style for this
system? Answer: NO for this one precisely, for hidden geometric
reasons. Good hope for variants of this system, see below.
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Example of difficulty: analyzing the nature and the number of intersection
points between these curves (or their tangents) is not easy ... here for the
case p = 2: the (non ?)-existence of T-waves previous style dramatically
depends on these details ... which can be modified with still very
reasonable qualitative properties ... e.g. in (5.7), we had: v

s = −∂W
∂v /

∂W
∂s ,

which determined w ... Work in progress. Collaborations ...
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Examples of numerical results for a variant: J.Greenberg. Here, the waves
look like for Bando’s model: periodic orbits, no shock, at the expenses of
adding a diffusion term in the first equation!!: philosophy of ”equivalent
equation to higher order”... see below
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Indeed, here, the macroscopic equation is, say with l = 1:
{
∂ts = ∂X v+(1/2) ∂2

XX v ,

∂tw = A(v)
v [1− se(v)

s ] ; w = ln(s/v).

It admits T-wave solutions: either closed periodic heteroclinic orbits
connecting the two saddle points Mi = (vi , se(vi )), i = 1, 3. The crucial
equilibrium point M2 is a center. Here and below, transitory regime ...
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Additional Remarks. Conclusion
The original AR model is too stable for describing realistic oscillations

However, we need its convective short time stability properties for
avoiding bad things ...

Adding a relaxation term which violates the subcharacteristic
condition, but (only at intermediate densities), can give nice
qualitative results, still avoiding any crash or negative speed (invariant
regions), as in the ARG type of models (crucial role of Jim!).
Compare with Bando or PW ...

Same approach can be applied e.g. to (truncated ) IDM, with a neat
priority to discrete models (dispersion relation ...) away from
{ρ = ρmax = 1, v = 0}. Many possible (neater) modifications near
this dangerous region ...

Like in many asymptotic expansions, adding a higher order (diffusive
or dispersive) term in one of the PDEs can be very useful for getting
oscillating solutions for the discrete system, even though, rigorously,
the PDE is wrong! Modified equation philosophy: priority to discrete
models ...
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A few comments and references
Among many other aspects ...

Aw-Rascle (AR), SIAP 2000: ”Resurrection”: initial model, Riemann
Problem.

Aw-Klar-Materne, SIAP 2002: Lagrangian view, rigorous derivation
from microscopic models. See this paper for details on the
convergence of Godunov scheme, either to the Follow the Leader
ODE Model when ∆t → 0 or directly to the Lagrangian equivalent
system (L) when both ∆X and ∆t → 0 (with a fixed ratio, under the
CFL condition) and the related commutation of limits.

Much more recently, including with a relaxation term and/or in the
case of vacuum, see Godvik and Hanche Olsen, 2008, see also
Colombo-Marcellini-Rascle, SIAP 2010, using an interpretation of a
Phase Transition Model of Traffic of Colombo as a variant of AR
model already observed by Lebacque et al, who gave also a (slightly
more general, but much nicer) presentation of (AR) as GSOM
(Generalized Second Order Models).
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See also related works in Berthelin-Degond et al, ARMA 2008, M3AS
2008, with cartoons of traffic jams described as formal asymptotic
limits of (AR), leading to sticky (in)compressible clusters, and see
later extensions by Herty et al for applications to junctions.

For the (AR) system with relaxation, see J. Greenberg, SIAP 2001,
SIAP 2004 and 2007, see also the (unpublished) PhD Thesis of Aw,
and Greenberg-Klar-Rascle, SIAP 2003. See also a paper
Mauser-Moutari-Siebel: relaxed model with sometimes negative time
relaxation time.

For a study of a hybrid scheme (discrete near junctions, continuous
elsewhere, with Lagrangian interfaces, see Moutari-Rascle, SIAP 2008.

For relations between (AR) and kinetic models, see Klar-Wegener,
SIAP, early 2000’, and more recently papers by Herty, Illner and
co-workers, since 2008.
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About junctions and Homogenization

For the application to networks or more precisely to the Riemann
Problem at junctions, using the notions of demand an supply
(Lebacque)

For the study of the homogenized Lagrangian model and the proof of
existence and uniqueness of its solution, see Bagnerini-Rascle, SIMA
2003

For the application to junctions, strongly based on the previous paper,
see Herty-Rascle, SIMA 2006, Herty-Moutari-Rascle, NHM 2006, and
related papers by the same Authors

For many networks problems based on first order models (LWR) and a
neat discussion of additional criteria needed at junctions, we refer e.g.
to the book of Garavello-Piccoli.
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